RAGFlowChainR is an R package for Retrieval-Augmented Generation (RAG)
workflows with local retrieval backends (DuckDB and VectrixDB) plus
optional web search.
The README is intentionally short. Full backend workflows are documented in vignettes.
install.packages("RAGFlowChainR")install.packages("remotes")
remotes::install_github("knowusuboaky/RAGFlowChainR")- DuckDB backend article: https://knowusuboaky.github.io/RAGFlowChainR/articles/duckdb-backend.html
- VectrixDB backend article: https://knowusuboaky.github.io/RAGFlowChainR/articles/vectrixdb-backend.html
- Function reference: https://knowusuboaky.github.io/RAGFlowChainR/reference/
library(RAGFlowChainR)
rag <- create_rag_chain(
llm = function(prompt) "mock answer",
vector_database_directory = "my_vectors.duckdb",
method = "DuckDB",
use_web_search = FALSE
)
rag$invoke("What is RAG?")
rag$disconnect()For complete ingestion, indexing, and backend-specific setup, use the two backend vignettes above.
Sys.setenv(TAVILY_API_KEY = "your-tavily-api-key")
Sys.setenv(OPENAI_API_KEY = "your-openai-api-key")
Sys.setenv(GROQ_API_KEY = "your-groq-api-key")
Sys.setenv(ANTHROPIC_API_KEY = "your-anthropic-api-key")MIT (c) Kwadwo Daddy Nyame Owusu Boakye
